Pre-mRNA splicing in plants: characterization of Ser/Arg splicing factors.

نویسندگان

  • S Lopato
  • A Mayeda
  • A R Krainer
  • A Barta
چکیده

The fact that animal introns are not spliced out in plants suggests that recognition of pre-mRNA splice sites differs between the two kingdoms. In plants, little is known about proteins required for splicing, as no plant in vitro splicing system is available. Several essential splicing factors from animals, such as SF2/ASF and SC-35, belong to a family of highly conserved proteins consisting of one or two RNA binding domain(s) (RRM) and a C-terminal Ser/Arg-rich (SR or RS) domain. These animal SR proteins are required for splice site recognition and spliceosome assembly. We have screened for similar proteins in plants by using monoclonal antibodies specific for a phosphoserine epitope of the SR proteins (mAb1O4) or for SF2/ASF. These experiments demonstrate that plants do possess SR proteins, including SF2/ASF-like proteins. Similar to the animal SR proteins, this group of proteins can be isolated by two salt precipitations. However, compared to the animal SR proteins, which are highly conserved in size and number, SR proteins from Arabidopsis, carrot, and tobacco exhibit a complex pattern of intra- and interspecific variants. These plant SR proteins are able to complement inactive HeLa cell cytoplasmic S1OO extracts that are deficient in SR proteins, yielding functional splicing extracts. In addition, plant SR proteins were active in a heterologous alternative splicing assay. Thus, these plant SR proteins are authentic plant splicing factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association of nuclear matrix antigens with exon-containing splicing complexes

mAbs raised against the human nuclear matrix (anti-NM)1 mAbs have been used to investigate the role of nuclear matrix antigens in pre-mRNA processing. The three anti-NM mAbs used in this study recognize antigens that are highly localized to nuclear matrix speckles. Surprisingly, all three of these mAbs preferentially immunoprecipitate splicing complexes containing exon sequences. The anti-NM mA...

متن کامل

The serine/arginine-rich protein family in rice plays important roles in constitutive and alternative splicing of pre-mRNA.

Ser/Arg-rich (SR) proteins play important roles in the constitutive and alternative splicing of pre-mRNA. We isolated 20 rice (Oryza sativa) genes encoding SR proteins, of which six contain plant-specific characteristics. To determine whether SR proteins modulate splicing efficiency and alternative splicing of pre-mRNA in rice, we used transient assays in rice protoplasts by cotransformation of...

متن کامل

Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors.

We present a systematic analysis of sequence motifs found in metazoan protein factors involved in constitutive pre-mRNA splicing and in alternative splicing regulation. Using profile analysis we constructed a database enriched in protein sequences containing one or more presumptive copies of the RNA-recognition motif (RRM). We provide an accurate alignment of RRMs and structure-based criteria f...

متن کامل

The Serine/Arginine-Rich Protein Family in Rice Plays Important Roles in Constitutive and Alternative Splicing of Pre-mRNA W

Ser/Arg-rich (SR) proteins play important roles in the constitutive and alternative splicing of pre-mRNA. We isolated 20 rice (Oryza sativa) genes encoding SR proteins, of which six contain plant-specific characteristics. To determine whether SR proteinsmodulate splicing efficiency and alternative splicing of pre-mRNA in rice,we used transient assays in rice protoplasts by cotransformation of S...

متن کامل

Sodium Butyrate and Valproic Acid as Splicing Restoring Agents in Erythroid Cells of b-Thalassemic Patients

Background: b-Thalassemia is a common autosomal recessive disorder in human caused by a defect in b-globin chain synthesis. The most common mutations causing b-Thalassemia have been found to be splicing mutations. Most of which activate aberrant cryptic splicing/sites without complete disruption of normal splicing. IVSI-110 mutation, a common splicing mutation, leads to a 90% reduction of norma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 93 7  شماره 

صفحات  -

تاریخ انتشار 1996